IT PROJECT MANAGEMENT ## Summary | ◆ 1. Process Groups & Knowledge Areas | . 2 | |--|-----| | Process Groups (5) | . 2 | | Knowledge Areas (10) | . 2 | | Stakeholder & Communication Management | . 2 | | ◆ 2. PMP Formulas (Must Memorize!) | . 2 | | Earned Value Management (EVM) | . 2 | | Critical Path & Float | . 3 | | Types of Float: | | | Estimating | . 4 | | ◆ 3. Collect Requirements | . 4 | | ♦ 4. Estimating Techniques | . 5 | | ◆ 5. Risk & Change Management | . 5 | | Risk Responses | . 5 | | ◆ 6. Conflict Resolution (PMI Order of Preference) | . 8 | | ◆ 7. Leadership & Management Styles | . 8 | | ♦ 8. Procurement Types | . 8 | | ◆ 9. PMP Project Management Approaches | . 8 | | Complement: Agile vs Predictive (Key Differences) | . 9 | | Complement: Agile "controls" (in PMP / PMI-ACP language) | . 9 | | Complement: Agile Roles Cheat Sheet | . 9 | | Complement: DoR vs DoD Cheat Sheet | 10 | | Complement: PMP Schedule Techniques1 | 11 | | ◆ 10. Important PMP Acronyms1 | | | ◆ 11. Quality Control1 | | | Complement: Test Quality Control | | | ◆ 12. Exam Strategy Tips1 | 13 | | ♦ 13. Exam Timing Tips | 13 | #### PMP Exam Master Cheat Sheet #### • 1. Process Groups & Knowledge Areas #### Process Groups (5) - 1. Initiating Define scope, identify stakeholders, Project Charter. - 2. Planning Create PMP, baselines, define WBS, risk planning. - 3. Executing Direct/manage work, acquire/manage team, implement quality. - 4. Monitoring & Controlling Track performance, control scope/schedule/cost/risk. - 5. Closing Validate deliverables, release resources, lessons learned. #### Knowledge Areas (10) "I Saw Six Cats Quickly Running Carrying Really Pretty Socks" - I Integration - S Scope - S Schedule - C Cost - Q Quality - R Resource - C Communications - R Risk - P Procurement - S Stakeholder #### Stakeholder & Communication Management - Identify all stakeholders early and maintain engagement (Stakeholder Engagement Assessment Matrix). - Tailor communication methods based on audience (executives ≠ developers) : Interactive, Push/Pull communication - Use active listening and empathy to manage conflicts. Exam tip: Always engage stakeholders continuously, especially in agile environments. #### • 2. PMP Formulas (Must Memorize!) ### Earned Value Management (EVM) - BAC (Budget at Completion) - EV (Earned Value) = % Complete × BAC - PV (Planned Value) = Planned % × BAC - AC (Actual Cost) = Spent so far - CPI (Cost Performance Index) = EV ÷ AC - SPI (Schedule Performance Index) = EV ÷ PV - CV (Cost Variance) = EV AC - SV (Schedule Variance) = EV PV - EAC (Estimate at Completion) - o If typical: EAC=BAC ÷ CPI - o If atypical: EAC=AC + (BAC-EV) - o If considering both CPI & SPI: EAC=AC +(BAC-EV) ÷ (CPI×SPI) - ETC (Estimate to Complete) = EAC AC - VAC (Variance at Completion) = BAC EAC - To-Complete Performance Index (TCPI) - o TCPI (to meet BAC) = (BAC EV) ÷ (BAC AC) - TCPI (to meet EAC) = $(BAC EV) \div (EAC AC)$ #### Critical Path & Float • Float (Slack) = LS - ES = LF - EF #### Where: - ES (Early Start): Earliest time an activity can begin, based on predecessors. - EF (Early Finish): Earliest time an activity can finish = ES + Duration. - LS (Late Start): Latest time an activity can begin without delaying the project. - LF (Late Finish): Latest time an activity can finish without delaying the project. ### Meaning of the Formula: - LS ES: Difference between the latest you can start and the earliest you can start. - LF EF: Difference between the latest you can finish and the earliest you can finish. - Both give the same result = Float. #### Types of Float: - Total Float: Time an activity can slip without delaying the project end date. - Free Float: Time an activity can slip without delaying the start of its successor. - Critical Path → Path with O float. ### Estimating - Triangular = (O + M + P)/3 - (Expected Duration (TE)) -> Beta (PERT) = (O + 4M + P)/6 - Standard Deviation (σ or SD) -> σ (SD) = (P O)/6 - Channels = n(n-1)/2 ### Team Development (Tuckman's Model) - Forming → Storming → Norming → Performing → Adjourning - Conflict is normal; focus on resolution, not escalation. - Use coaching, mentoring, and empowerment to improve performance. #### • 3. Collect Requirements | Technique | When to Use | Example | |--------------------------------------|--|---| | Interviews | When you need detailed, individual input from stakeholders. | PM interviews marketing lead to define campaign requirements. | | Focus Groups | When you want diverse stakeholder input quickly. | Gather customers + users to discuss features of a new mobile app. | | Facilitated Workshops
(e.g., JAD) | When you need cross-functional alignment. | Business, IT, and compliance meet to define system requirements. | | Brainstorming | For idea generation, especially early in project. | Team brainstorms features for a new e-commerce site. | | Questionnaires /
Surveys | When you need input from large groups. | Online survey sent to 1,000 potential customers. | | Prototypes | When requirements are unclear → show model, refine through feedback. | Create wireframes for a new web platform. | | Observation ("Job
Shadowing") | When you want to see how users actually work. | PM shadows warehouse staff to define inventory system requirements. | | Benchmarking | When you want to compare practices with industry peers. | Compare logistics practices with leading competitors. | | Document Analysis | When historical/legacy systems exist. | Analyze current process manuals to extract requirements. | #### 🔽 Exam Tip: - If requirements are unclear → Prototypes. - If users can't articulate needs → Observation. - If lots of stakeholders → Surveys. - If cross-functional alignment needed → Facilitated workshops. ## • 4. Estimating Techniques | Technique | How It Works | Accuracy | When to Use | Pros | Cons | |-------------------------|--|---|---|---|---| | Analogous
(Top-down) | Uses historical
data from
similar past
projects | -25% to +75% (least
accurate) | Early stage, little
detail available | Quick, low effort | Not precise,
assumes
history is
relevant | | Parametric | Uses statistical
models (e.g.,
cost per unit,
productivity
rates) | -10% to +25%
(moderate accuracy) | Idata and | More accurate
than analogous,
fast | Limited by
quality of
data and
assumptions | | Three- | Combines
Optimistic (O),
Most Likely (M),
Pessimistic (P)
→ weighted avg:
(O+4M+P)/6(O +
4M + P)/6 | -15% to +20% (better
than
parametric/analogous) | lincartainty/rick | Accounts for risk/uncertainty, provides range | Requires
expert input,
can be
subjective | | Bottom-Up | Estimates each
work package,
then rolls up | -5% to +10% (most
accurate) | detailed & scope | Highest
accuracy,
detailed | Time-
consuming,
resource-
intensive | ### ♦ 5. Risk & Change Management - Always manage proactively, not reactively. - For change requests → Follow the Integrated Change Control process. - For risks → Identify, analyze, respond, monitor (use risk register). Exam tip: If scope changes → never skip the change control process. - EMV (Expected Monetary Value): Probability × Impact - Decision Tree Analysis → Sum of EMVs ### Risk Responses - Threat Responses (Negative Risks) - 👉 "AMTA" → Avoid, Mitigate, Transfer, Accept Think: "Avoid My Terrible Accident" 🚙 🤻 - Avoid → eliminate risk. - Mitigate → reduce risk. - Transfer → give to someone else. - Accept → live with it. - Opportunity Responses (Positive Risks) - "EESA" → Exploit, Enhance, Share, Accept Think: "Enjoy Every Smart Advantage" 🧩 - Exploit → guarantee it happens. - Enhance → increase chance/impact. - Share → partner to maximize. - Accept → take it if it comes. | Strategy | Type of Risk | When to Use | How It Works | Example | |----------------------------|--|---|--|---| | Avoid
(AMTA) | Negative (Threat) | Use when the risk cannot
be accepted and you want
to eliminate it completely. | Change the project
plan, scope, or
approach to remove
the threat. | Changing the supplier to avoid a high-risk vendor. | | Mitigate
(AMTA) | Negative (Threat) | remove the risk but can | Add safeguards,
quality checks,
redundancies, or
training. | Adding extra
testing to reduce
defects. | | Transfer
(AMTA) | Negative (Threat) | Use when you cannot
manage the risk directly
but can shift the
responsibility to a third
party. | Use contracts,
warranties, or
insurance. | Purchasing cyber insurance to handle potential data breaches. | | Accept
(AMTA &
EESA) | Negative (Threat)
& Positive
(Opportunity) | Use when the cost or effort to manage the risk is higher than its impact. | Do nothing proactively but monitor the risk. | Accepting minor shipment delays. | | Exploit
(EESA) | Positive
(Opportunity) | Use when you want to ensure the opportunity happens. | or modify plans to | Adding a dedicated
team to secure a
key client deal. | | Enhance
(EESA) | Positive
(Opportunity) | Use when you want to increase the likelihood or impact of an opportunity. | Improve processes,
add resources, or
optimize schedules. | Offering early
delivery discounts
to attract more
customers. | | Share
(EESA) | Positive
(Opportunity) | Use when the opportunity can be maximized by partnering with others. | Collaborate with
another organization
or stakeholder. | Partnering with a vendor to co-develop a product. | ## Project Selection • Benefit Cost Ratio (BCR): Benefits ÷ Cost ## IT PROJECT MANAGEMENT - NPV (Net Present Value): Higher is better - IRR (Internal Rate of Return): Higher is better - Payback Period: Shorter is better | Metric | Definition | Formula | Decisio
n Rule | PMP
Recommendatio
n | Pros | Cons | |--|--|---|---|--|--|--| | NPV
(Net
Present
Value) | Measures the value added by the project today, considerin g the time value of money. | $NPV = \sum_{t=1}^n rac{R_t}{(1+i)^t} - C_t$ | - NPV >
0 →
Accept
✓
- NPV <
0 →
Reject | Choose the
project with the
highest positive
NPV. | - Considers
time value
of money
- Shows
actual
monetary
value
added | - Sensitive
to
discount
rate
- Requires
cashflow
estimates | | IRR
(Internal
Rate of
Return) | The discount rate at which NPV = 0; represents the project's expected annual return. | Solve: $0 = \sum_{t=1}^n rac{R_t}{(1+IRR)^t} - C_0$ | - IRR > Cost of Capital → Accept ✓ - IRR < Cost of Capital → Reject X | Choose the
project with the
highest IRR if
risks are similar. | - Easy to
interpret as
a % return
- Useful for
ranking
projects | - Complex
to
calculate
-
Misleadin
g when
projects
have non-
normal
cashflow
s | | ROI
(Return on
Investmen
t) | Measures
the
profitabilit
y
percentag
e relative
to
investment
cost. | Cost | Higher
ROI =
Better
project | Use when
comparing
profitability
quickly; not as
robust as
NPV/IRR. | - Simple to
calculate
- Intuitive
for
stakeholder
s | - Ignores
time
value of
money
- Can be
misleadin
g if
project
duration
differs | | Payback
Period | Time
required to
recover
the initial
investmen
t. | $Payback\ Period = rac{Initial\ Investment}{Annual\ Cash\ Inflow}$ | Shorter
Paybac
k
Period
= Better | Use for risk-
sensitive
projects or when
liquidity is
critical. | - Simple
and quick
- Good for
risk analysis | - Ignores
time
value of
money
- Ignores
benefits
after
payback | ## • 6. Conflict Resolution (PMI Order of Preference) - 1. Collaborating/Problem Solving → Win-Win ✓ - 2. Compromising → Partial win/lose - 3. Smoothing → Focus on agreements - 4. Forcing → Win-lose - 5. Withdrawal/Avoidance → Not addressing #### • 7. Leadership & Management Styles - Servant Leadership → Key for Agile (support teams, remove blockers). - Transformational → Inspire and empower teams. - Transactional -> Reward/punish based on performance. - Autocratic → PM makes all decisions - Laissez-faire → Team-driven - Situational Leadership → Adapt style based on team maturity. Exam tip: Prefer servant leadership in adaptive/agile projects. ### • 8. Procurement Types • Fixed Price (FP): Risk on seller • Cost Reimbursable (CR): Risk on buyer • Time & Material (T&M): Hybrid #### • 9. PMP Project Management Approaches | Approach | When to Use | Pros | Cons | |---------------------------|--|---|--| | Predictive
(Waterfall) | Compliance/regulatory projects- | | - Inflexible to change- Risk
of late discovery of issues-
Customer sees product late | | Iterative | early feedback on partial | - Early delivery of
working versions-
Stakeholder feedback
guides improvements | - More planning effort- Can
feel slow if increments don't
add much value | | Incremental | - When you can deliver value in
usable pieces (modules, features)-
Software product rollouts | Reduces risk by | - Integration challenges-
May need strong release
management | | Approach | When to Use | Pros | Cons | |----------|--|---|---| | Agile | involvement- Innovation-driven | Frequent customer
feedback- Prioritizes
high-value features | - Needs mature, engaged
team- Less effective with
fixed contracts/budgets-
Harder in regulated
environments | | Hybrid | - Large, complex projects where
some parts are predictable and
others are adaptive- Digital
transformation, public works with
IT component | flexibility-Tailors to | - More complex governance-
Requires strong
coordination between
predictive and agile tracks | ### Complement: Agile vs Predictive (Key Differences) | Aspect | Predictive (Waterfall) | Agile (Adaptive) | |---------------|------------------------|-----------------------------| | Scope | Fixed | Evolving | | Cost/Schedule | Fixed baseline | Flexible, iterative | | Change Mgmt | Formal CR process | Welcomed & integrated | | Role of PM | Directs, controls | Facilitator, servant leader | | Documentation | Heavy | Just enough | | Delivery | End of project | Incremental | ## Complement: Agile "controls" (in PMP / PMI-ACP language) When PMI refers to Agile controls, they usually mean mechanisms to monitor and adjust work such as: - Daily standups - Burndown / burnup charts - Velocity tracking - WIP limits (Kanban) - Definition of Done / Ready - Reviews and retrospectives These are about governance and monitoring progress. ### Complement: Agile Roles Cheat Sheet | Role | Key Responsibilities | | What They Do
Not Decide | |-----------------------|-----------------------------|---|--| | Treduct eviller (1 e) | roadmap- Manages
backlog | build- Priority of
work- Accept/reject | - How the team
delivers- Technical
decisions- People
management | ## IT PROJECT MANAGEMENT | Role Key Responsibilities | | IVV nai inevidecide | What They Do
Not Decide | |---|---|--|--| | | Ensures value delivery to stakeholders | | | | SCHIM MASIALISMI | - Servant-leader- Coaches
Agile practices- Removes
impediments- Facilitates
ceremonies | improvements- How
Agile ceremonies are | | | (Developers/Testers/Designers) | · · | ('1)()('\(\text{C}\)\()()(\(\text{K}\) | - What features to
build- Final say on
priorities | | Project Manager (in
Hybrid/Scaled Agile) | - Aligns Agile work with organizational strategy-
Manages stakeholders outside the team- Ensures governance, budget, reporting | - Governance &
compliance-
Integrating Agile
outputs with larger
program/portfolio | - Daily team
decisions-
Detailed backlog
management | ### Exam Tip Rules of Thumb: - If question is about scope, backlog, product changes → PO. - If about team process, impediments → SM. - If about how to deliver, technical choices → Team. - If about budget, governance, portfolio alignment → PM (in hybrid/large orgs). ### Complement: DoR vs DoD Cheat Sheet | Concept | Definition | Purpose | Example Criteria | |---------------------------------|---|---|--| | Definition
of Ready
(DoR) | A checklist of conditions
that a backlog item must
meet before the team can
pull it into a sprint. | small, and testable
before committing.
Prevents half-baked work | - User story well-written (INVEST)-
Acceptance criteria defined-
Dependencies identified- Story
estimated- Business value
understood | | III)Atinition | of what "complete"
means for work delivered | truly finished, potentially shippable, and meet | - Code completed & peer
reviewed- Unit & acceptance tests
passed- Integrated into main
branch- No critical defects open-
Documentation updated | ## ✓ Key Exam Tips: - DoR = Entry criteria (before sprint / work starts). - DoD = Exit criteria (after sprint / work is complete). - If work is incomplete at sprint end → DoR was weak. - If work is "done" but not shippable → DoD was weak. ## Complement: PMP Schedule Techniques | Technique | What It Does | Purpose | Pros | Cons | |-----------------------|--|---|---|--| | Resource
Leveling | Adjusts start/finish dates
based on resource availability
(no one is overallocated). May
extend schedule. | Balances resource
usage. | - Prevents burnout-
Realistic plan | - Can delay
project- May
change critical
path | | Resource
Smoothing | available float only a project | Optimizes
resource usage
without delaying
project. | - Keeps end date
fixed- Reduces
peaks in resource
demand | - Less flexible-
Only possible if
float exists | | Crashing | Add extra resources (people, overtime, money) to critical path activities to shorten schedule. | To finish project
sooner. | - Shortens
schedule- Keeps
sequence same | - Increases cost-
May cause
inefficiency | | Fast
Tracking | that were originally sequential | To finish earlier
without adding
cost. | - No direct cost
increase- Can save
significant time | - Increases risk-
May cause
rework | ### ✓ Easy Exam Mnemonics - Leveling = Resources drive schedule (can delay project). - Smoothing = Adjust within float (no project delay). - Crashing = Add resources = more cost. - Fast tracking = Overlap activities = more risk. #### ◆ 10. Important PMP Acronyms - BAC Budget at Completion - EVM Earned Value Management - WBS Work Breakdown Structure - OBS Organizational Breakdown Structure - RACI Responsible, Accountable, Consulted, Informed - MoSCoW Must, Should, Could, Won't ## ♦ 11. Quality Control | Tool | When to Use | Pros | Cons | |-------------|-----------------------------|-------------------------------|--| | Scatter | , 0 | Helps identify cause–effect | - Doesn't prove causation-
Hard to interpret with
many variables | | III liadram | brainstorming or collecting | clearly- Great for root cause | - Subjective grouping-
Doesn't quantify
importance | | Tool | When to Use | Pros | Cons | |--------------|--|--|---| | | lover time and check it a | - Identifies common vs.
special cause variation-
Helps avoid over-adjusting
processes | - Requires data collection
over time- Can be misread
if limits aren't set correctly | | 9 | | - Easy to interpret-
Highlights most frequent
problems | - No info on sequence or
time- Doesn't show
relationships between
causes | | (80/20 rule) | | - Prioritizes issues by
impact- Focuses efforts on
what matters most | - Oversimplifies (not all
problems fit 80/20)- Needs
accurate data collection | | (Ishikawa) | To analyze root causes of a
problem across categories
(Machines, Methods, Materials,
People). | - Structured brainstorming-
Reveals multiple root causes | · | ## Complement: Test Quality Control | Practice | When to Use | Pros | Cons | |---|---|--|---| | Test-Driven
Development
(TDD) | When you want high code quality and fast defect detection. Write tests first, then code to pass them. | - Forces clear requirements -
Prevents over-coding -
Reduces bugs early | - Requires skilled devs -
Slows initial
development | | Behavior-Driven
Development
(BDD) | When you want business +
technical alignment. Uses
natural language scenarios
(Given–When–Then). | - Improves communication
with non-tech stakeholders -
Ensures features meet
business needs | - Needs strong
collaboration - Can be
time-consuming | | Acceptance Test-
Driven
Development
(ATDD) | When you want to ensure requirements are validated before coding begins. Acceptance criteria drive the development. | nts are testers, and devs - Ensures features meet agreed | | | Continuous
Integration (CI) | When multiple devs
commit code frequently.
Builds and tests
automatically. | - Detects integration errors
quickly - Encourages frequent
commits - Supports Agile
delivery pace | - Needs automation
setup - Fails if tests
aren't comprehensive | | Pair
Programming | When you want knowledge
sharing and fewer errors.
Two devs work at one
workstation. | - Higher code quality - Cross-
training - Real-time review | - More effort/cost
upfront - Can slow
down if pairs don't
collaborate well | | Practice | When to Use | Pros | Cons | |------------|-------------------------|---|------| | Regression | irisk nreaking evisting | - Saves time in long run -
Catches recurring defects < | | ### ♦ 12. Exam Strategy Tips - PMI Mindset: Always choose the answer that shows → Proactive, Preventive, Collaborative, Long-term, and Formal process-oriented. - Escalate to sponsor/stakeholders only if outside PM's authority. - Never choose punitive actions (e.g., blaming, firing). - Always analyze root cause before corrective action. - Favor communication, risk management, and team empowerment. | Situation | PMP Preferred Action | |------------------------------|----------------------------------| | Scope change requested | Go through formal change control | | Stakeholder conflict | Collaborate and seek win-win | | Unclear requirements | Choose agile/iterative | | Fixed regulatory constraints | Choose predictive | | Deliver value quickly | Choose incremental/agile | | Team not performing | Coach, mentor, support | ## ♦ 13. Exam Timing Tips PMP Time Management Sheet (230 minutes, 180 questions) | Question # | Target Elapsed Time | Time Remaining | Notes | |------------|---------------------|----------------|-----------------------------------| | Q30 | ~35 minutes | ~185 minutes | lf you're slower, speed up a bit. | | Q60 | ~75 minutes | ~155 minutes | Break 1 checkpoint. | | Q90 | ~115 minutes | ~115 minutes | Halfway in time and questions. | | Q120 | ~150 minutes | ~80 minutes | Break 2 checkpoint. | | Q150 | ~190 minutes | ~40 minutes | Final stretch – keep pace. | | Q180 | ~225 minutes | ~5 minutes | Buffer for review / flagged Qs. | ## How to Use It - Each 30-question block ≈ 35-40 minutes. - Each 60-question block ≈ 70–75 minutes. - Use breaks at Q60 and Q120 to reset. - If you're >10 minutes behind at any checkpoint, stop overthinking and move faster. ## Quick Tips - Mark tough questions and move on don't burn >90 sec on one Q. - Expect questions that may take longer, so balance with fast multiple-choice Qs. - Breaks are optional, but recommended to clear your head.